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Sequence Set Design With Good Correlation
Properties Via Majorization-Minimization
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Abstract—Sets of sequences with good correlation properties are
desired in many active sensing and communication systems, e.g.,
multiple-input-multiple-output (MIMO) radar systems and code-
division multiple-access (CDMA) cellular systems. In this paper,
we consider the problems of designing complementary sets of se-
quences (CSS) and also sequence sets with both good auto- and
cross-correlation properties. Algorithms based on the general ma-
jorization-minimization method are developed to tackle the op-
timization problems arising from the sequence set design prob-
lems. All the proposed algorithms can be implemented by means
of the fast Fourier transform (FFT) and thus are computationally
efficient and capable of designing sets of very long sequences. A
number of numerical examples are provided to demonstrate the
performance of the proposed algorithms.
Index Terms—Autocorrelation, CDMA sequences, complemen-

tary sets, cross-correlation, majorization-minimization, unimod-
ular sequences.

I. INTRODUCTION

S EQUENCES with good correlation properties play an im-
portant role in many active sensing and communication

systems [1], [2]. The design of a single sequence with good au-
tocorrelation properties (e.g., small autocorrelation sidelobes)
has been studied extensively, e.g., see [3]–[5] and the references
therein. In this paper, we focus on the design of sets of sequences
with good correlation properties. We consider both the design
of complementary sets of sequences (CSS) and the design of
sequence sets with good auto- and cross-correlation properties.
In addition, in order to avoid non-linear side effects and make
full use of the transmission power available in the system, we
restrict our design to unimodular sequences.
Let denote a set of complex unimodular se-

quences each of length , i.e.,
. Then the aperiodic cross-correlation of and

at lag is defined as

(1)
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When , (1) reduces to the autocorrelation of .
The motivation of CSS design comes from the difficulties in

designing a single unimodular sequence with impulse-like au-
tocorrelation. For instance, it can be easily observed that the au-
tocorrelation sidelobe at lag of a unimodular sequence is
always equal to 1, no matter how we design the sequence. The
difficulties have encouraged researchers to consider the idea of
CSS, and the set of sequences is called complemen-
tary if and only if the autocorrelations of sum up to zero
at any out-of-phase lag, i.e.,

(2)

CSS have been applied in many active sensing and commu-
nication systems, for instance, multiple-input-multiple-output
(MIMO) radars [6], radar pulse compression [7], orthogonal
frequency-division multiplexing (OFDM) [8], ultra wide-band
(UWB) communications [9], code-division multiple-access
(CDMA) [10], and channel estimation [11]. Owing to the
practical importance, a lot of effort has been devoted to the
construction of CSS. The majority of research results on CSS
at the early stage have been concerned with the analytical
construction of CSS for restricted sequence length and set
cardinality . More recently, computational methods have
also been proposed for the design of CSS, see [12] for example.
In contrast to analytical constructions, computational methods
are more flexible in the sense that they do not impose any
restriction on the length of sequences or the set cardinality.
In CSS design, only the autocorrelation properties of the se-

quences have been considered. But some applications require a
set of sequences with not only good autocorrelation properties
but also good cross-correlations among the sequences, for ex-
ample, in CDMA cellular networks or in MIMO radar systems.
Good autocorrelation indicates that a sequence is nearly uncor-
related with its own time-shifted versions, while good cross-cor-
relation means that any sequence is nearly uncorrelated with all
other time-shifted sequences. Good correlation properties in the
above sense ensure that matched filters at the receiver end can
easily separate the users in a CDMA system [13] or extract the
signals backscattered from the range of interest while attenu-
ating signals backscattered from other ranges in MIMO radar
[14].
Extending the approaches in [5], we present in this paper

several new algorithms for the design of complementary sets
of sequences and sequence sets with both good auto- and
cross-correlation properties. The sequence set design problems
are first formulated as optimization problems and they include
the single sequence design problems considered in [4], [5] as
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special cases. Then several efficient algorithms are developed
based on the general majorization-minimization (MM) method
via successively majorizing the objective functions twice. All
the proposed algorithms can be implemented by means of
the fast Fourier transform (FFT) and are thus very efficient
in practice. The convergence properties and an acceleration
scheme, which can be used to further accelerate the proposed
MM algorithms, are also briefly discussed.
The remaining sections of the paper are organized as fol-

lows. In Section II, the problem formulations are presented. In
Section III, an MM algorithm is derived for the CSS design
problem, followed by the derivations of twoMM algorithms for
designing sequence sets with good auto- and cross-correlations
in Sections IV and V, respectively. Convergence analysis and
an acceleration scheme are introduced in Section VI. Finally,
Section VII presents some numerical results, and the conclu-
sions are given in Section VIII.
Notation: Boldface upper case letters denote matrices, bold-

face lower case letters denote column vectors, and italics denote
scalars. and denote the real field and the complex field, re-
spectively. and denote the real and imaginary part,
respectively. denotes the phase of a complex number.
The superscripts and denote transpose, com-
plex conjugate, and conjugate transpose, respectively. de-
notes the ( -th, -th) element of matrix and denotes
the -th element of vector . denotes the -th row of ma-
trix denotes the -th column of matrix , and
denotes the submatrix of from to . denotes the
Hadamard product. denotes the Kronecker product.
denotes the trace of a matrix. is a column vector con-
sisting of all the diagonal elements of . is a diag-
onal matrix formed with as its principal diagonal. is
a column vector consisting of all the columns of stacked.
denotes an identity matrix.

II. PROBLEM FORMULATION AND MM PRIMER

The problems of interest in this paper are the design of CSS
and the design of sequence sets with good auto- and cross-cor-
relation properties. In the following, we first provide criteria
to measure the complementarity of a sequence set and also the
goodness of auto- and cross-correlation properties respectively,
and then formulate the sequence set design problems as opti-
mization problems. The MM method is also briefly introduced,
which will be applied to tackle the optimization problems later.

A. Design of Complementary Set of Sequences

We are interested in developing efficient optimization
methods for the design of complementary sets of sequences.
Consequently, to measure the complementarity of a sequence
set , we consider the complementary integrated
sidelobe level (CISL) metric of a set of sequences, which is
defined as

(3)

Then a natural idea to generate complementary sets of uni-
modular sequences is to minimize the CISL metric in (3), i.e.,
solving the following optimization problem:

(4)

Note that if the objective of problem (4) can be driven to zero,
then the corresponding solution is a complementary set of se-
quences. But the problem may also be used to find almost com-
plementary sets of sequences for values for which no
CSS exists.

B. Design of Sequence Set With Good Auto- and
Cross-Correlation Properties
To design sequence sets with both good auto- and cross-cor-

relation properties, we consider the goodness measure used in
[14], which is defined as

(5)

In this criterion, the first term contains the autocorrelation
sidelobes of all the sequences and the cross-correlations are
involved in the second term. Then, to design unimodular se-
quence sets with good correlation properties, we consider the
following optimization problem:

(6)

Since , due to the unimodular
constraints, problem (6) can be written more compactly as

(7)

As have been shown in [1], the criterion defined in (5) is
lower bounded by and thus cannot be made very
small. This unveils the fact that it is not possible to design a set
of sequences with all auto- and cross-correlation sidelobes very
small. Therefore, we also consider the following more general
weighted formulation:

(8)

where are nonnegative
weights assigned to different time lags. It is easy to see that if
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we choose for all , then problem (8) reduces to (7).
But problem (8) provides more flexibility in the sense that we
can assign different weights to different correlation lags, so that
we can minimize the correlations only within a certain time lag
interval. Also note that when , problem (8) becomes the
weighted integrated sidelobe level minimization problem con-
sidered in [5].
Two algorithms named CAN and WeCAN were proposed in

[14] to tackle problems (8) and (7), respectively. But the au-
thors of [14] resorted to solving “almost equivalent” problems
that seem to work well in practice. In this paper, we develop al-
gorithms to directly tackle the sequence set design formulations
in (8) and (7).

C. The MM Method

The MM method refers to the majorization-minimization
method, which is an approach to solve optimization problems
that are too difficult to solve directly. The principle behind the
MM method is to transform a difficult problem into a series of
simple problems. Interested readers may refer to [15]–[17] and
references therein for more details.
Suppose we want to minimize over . Instead of

minimizing the cost function directly, the MM approach
optimizes a sequence of approximate objective functions that
majorize . More specifically, starting from a feasible point

, the algorithm produces a sequence according to the
following update rule:

(9)

where is the point generated by the algorithm at iteration
, and is the majorization function of at .

Formally, the function is said tomajorize the function
at the point if

(10)
(11)

In other words, function is an upper bound of
over and coincides with at .
It is easy to show that with this scheme, the objective value

is monotonically decreasing (nonincreasing) at every iteration,
i.e.,

(12)

The first inequality and the third equality follow from the prop-
erties of the majorization function, namely (10) and (11) respec-
tively and the second inequality follows from (9).
To derive MM algorithms in practice, the key step is to find a

majorization function of the objective such that the majorized
problem is easy to solve. For that purpose, the following re-
sult on quadratic upper-bounding will be useful later when con-
structing simple majorization functions.
Lemma 1 [4]: Let be an Hermitian matrix and

be another Hermitian matrix such that . Then for
any point , the quadratic function is majorized
by at .

III. DESIGN OF COMPLEMENTARY SET OF SEQUENCES VIA MM
To tackle problem (4) via majorization-minimization, we first

perform some reformulations. Let us define an auxiliary se-
quence of length as follows [12]:

(13)

then the first aperiodic autocorrelation lags of (denoted by
) can be written as

(14)

Then the sequence set is complementary if and only
if has a zero correlation zone (ZCZ) for lags in the interval

, and the CSS design problem (4) can be reformulated
as

(15)

The objective in (15) can be viewed as the weighted ISL metric
in [5] of the sequence (i.e., ) with
weights chosen as

(16)

However, in problem (15), the sequence has some special
structures and the original weighted ISL minimization algo-
rithm proposed in [5] for designing unimodular sequences
cannot be directly applied due to the zeros. But the algorithm
can be adapted to take the sequence structure into account and
in the following we give a brief derivation of the modified
algorithm, which mainly follows from Section III.B in [5].
Similar to Section III.B in [5], we perform two successive

majorization steps to problem (15). Let be
the length of , and be
Toeplitz matrices with the th diagonal elements being 1 and
0 elsewhere, i.e.,

(17)

Then the autocorrelations of can be written in terms
of as

(18)

Then given at iteration
, by using Lemma 1 we can majorize the objective of (15) by a
quadratic function as in [5] and the majorized problem after the
first majorization step is given by

(19)
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where

(20)

is a Hermitian Toeplitz matrix and
are given in (16).
To perform the second majorization step, we first bound the

maximum eigenvalue of the matrix as
in [5], i.e.,

(21)

where

(22)

(23)

(24)

and the matrix in (23) is the FFTmatrix with
. Then by applying Lemma 1 with

, we can obtain the majorized problem of (19) given
by

(25)

which can be rewritten as

(26)

where

(27)

Problem (26) admits the following closed form solution

(28)

The overall algorithm for the CSS design problem (4) is sum-
marized in Algorithm 1. Note that the algorithm can be imple-
mented by means of FFT (IFFT) operations, since is Hermi-
tian Toeplitz and it can be decomposed as

(29)

according to Lemma 4 in [5].

Algorithm 1: The MM Algorithm for CSS design problem (4).
Require: number of sequences , sequence length
1: Set and initialize .
2:
3: repeat
4:
5:
6:
7:
8:
9: 3

10:
11:

.
12:
13: until convergence

IV. DESIGN OF SEQUENCE SET WITH GOOD AUTO- AND
CROSS-CORRELATION PROPERTIES VIA MM

In this section, we consider the problem of designing se-
quence sets for both good auto- and cross-correlation proper-
ties. We first consider the more general problem formulation
with weights involved, i.e., problem (8), and derive an MM al-
gorithm for the problem in the following.
Let us first stack the sequences together

and denote it by , i.e.,

(30)

then we have
(31)

where is an block selection matrix defined as

(32)

We then note that (1) can be written more compactly as

(33)

where is defined as in (17) but is of size now. By
combining (33) and (31), we have

(34)

and then

(35)

By using (35), problem (8) can be rewritten as

(36)
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where

(37)

Since , it is easy to see that is a nonnegative real
symmetric matrix and it can be shown (see Lemma 5 in [5])
that

(38)

where . Then given at iteration , by using Lemma
1, we know that the objective of problem (36) is majorized by
the following function at :

(39)

Since the elements of are of unit modulus, it is easy to see
that the first term of (39) is just a constant. After ignoring the
constant terms, the majorized problem of (36) is given by

(40)

By substituting in (37) back, we have

(41)

and the second term of the objective can also be rewritten as

(42)

where is the inverse operation of . It is clear that
both (41) and (42) are quadratic in and problem (40) can be
rewritten as

(43)

where

(44)

(45)
and

. . .
...

...
. . . . . .

Note that in (43) we have removed the operator since
the matrices and are Hermitian. Since the majorized
problem (43) is still hard to solve directly, we propose to
majorize the objective function at again to further simplify
the problem that we need to solve at each iteration. Simi-
larly, to construct a majorization function of the quadratic
objective in (43), we need to find a matrix such that

and a straightforward choice may
be . But to compute the
maximum eigenvalue, some iterative algorithms are needed
and since we need to compute this at every iteration, it will
be computationally expensive. To maintain the computational
efficiency of the algorithm, here we propose to use some upper
bound of that can be easily
computed. To derive such an upper bound, we first introduce
several results that will be useful. The first result reveals a
fact regarding the eigenvalues of the matrix ,
which follows from [5].
Lemma 2: Let be an matrix and with

. Then and share the
same set of eigenvalues.
The second result indicates some relations between the eigen-

values of the Kronecker product of two matrices and the eigen-
values of the two individual matrices [18].
Lemma 3: Let and be square matrices of size and
, respectively. Let be the eigenvalues of and

be those of . Then the eigenvalues of are
(including algebraic multi-

plicities in all three cases).
The third result regards bounds of the extreme eigenvalues of

Hermitian Toeplitz matrices, which can be computed by using
FFTs [19].
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Lemma 4: Let be an Hermitian Toeplitz matrix
defined by as follows:

. . .
...

...
. . . . . .

and be a FFT matrix with
. Let and

be the discrete Fourier transform of . Then

(46)

(47)

Based on these results, we can now obtain an upper bound of
given in the following lemma.

Lemma 5: Let and be matrices defined in
(44) and (45), respectively. Let

and
. Then

(48)

where

(49)

and can be any submultiplicative matrix norm.
Proof: See Appendix A.

In our case, for computational efficiency, we choose the in-
duced -norm (also known as max-row-sum norm) in Lemma
5, which is defined as

(50)

Now, by choosing in Lemma 1, the
objective in (43) is majorized by

Again after ignoring the constant terms, the majorized problem
of (43) is given by

(51)

where

(52)

It is clear that problem (51) is separable in the elements of and
the solution of the problem is given by

(53)

According to the general steps of the majorization minimiza-
tion method, we can now implement the algorithm in a straight-
forward way, that is at each iteration, we compute according
to (52) and update via (53). Clearly, the computational cost is
dominated by the computation of . To obtain an efficient im-
plementation, here we further explore the special structure of
the matrices involved in the computation of .
We first note that the matrix in (44) can be written as the

following block matrix:

...
...

. . .
...

(54)

where each block is defined as

(55)

It is easy to see that the building blocks ,
are Toeplitz matrices and when , they are also Hermitian.
In the following, we introduce a simple result regarding Toeplitz
matrices (not necessarily Hermitian) that can be used to perform
the matrix vector multiplication more efficiently via FFT
(IFFT).
Lemma 6: Let be an Toeplitz matrix defined as

follows:

. . .
...

...
. . . . . .

and be a FFT matrix with
. Then can be de-

composed as , where
.

Proof: See Appendix B.
According to Lemma 6, by defining to be the

matrix composed of the first columns of the FFT
matrix, i.e.,

(56)

we know that

(57)

where

(58)
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Thus, the matrix vector multiplication can be performed
as

...
. . .

... (59)

where is a block diagonal matrix given by

. . .
...

...
. . . . . .

(60)

From (59), we can see that the multiplication takes
FFT (IFFT) operations if all are given.

Since to form the vectors , all the autocor-
relations and cross-correlations, i.e.,

, are needed, and another FFT (IFFT)
operations are required. Similarly, can also be computed
with FFT (IFFT) operations, since it can be obtained
by taking the largest element of the vector , where is
the matrix with each element being the modulus of the corre-
sponding element of , i.e., . Fi-
nally, to compute we first conduct some
transformations as follows:

(61)

Since is Toeplitz, we know from Lemma 6 that it can be
decomposed as

(62)

where is the same as the one defined in Lemma 5. Thus,
can be computed with 3 FFT (IFFT)

operations.
In summary, to compute as in (52), around
-point FFT (IFFT) operations are needed. Since the compu-

tational complexity of one FFT (IFFT) is , the per
iteration computational complexity of the proposed algorithm is
of order . The overall algorithm is summarized
in Algorithm 2.

Algorithm 2: The MM Algorithm for problem (8)
Require: number of sequences , sequence length ,
weights
1: Set , initialize of length .
2:

3:
4:

5:
6: repeat
7: Compute

.
8: Compute according to (58).
9: Compute according to (59).
10: Compute based on .
11:
12:
13:
14:
15: until convergence

V. SIMPLIFIED MM FOR THE CASE WITHOUT WEIGHTS

In the previous section, we developed an algorithm
for problem (8). By simply choosing weights

, the algorithm can be readily applied
to solve problem (7). However, as analyzed in the previous
section, the algorithm requires about -point
FFT (IFFT) operations at every iteration. In this section, we
will derive an algorithm for problem (7), which requires only

-point FFT (IFFT) operations per iteration.
Let us denote the sequence covariance matrix at lag by ,

i.e.,

...
. . .

...

(63)

By using (33), it is easy to see that

(64)

where
(65)

With the above matrix notation, problem (7) can be rewritten as

(66)

Since
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we have

(67)

where

(68)

Let us define

(69)

where . Since is Toeplitz
and can be written in terms of according to
Lemma 6, it can be shown that the matrix defined in (68) can
also be written as

(70)

and then we have

(71)

Thus, problem (66) can be further reformulated as

(72)

To construct a majorization function of the objective in (72),
we propose to majorize each according to the fol-
lowing lemma.
Lemma 7: Let . Then for given

is majorized at over the interval by the fol-
lowing quadratic function:

(73)

where

(74)

Proof: See Appendix C.
Given at iteration , by taking as a whole,

we know from Lemma 7 that each (for any
) is majorized by

(75)

where

(76)

(77)

and is an upper bound of over the set of interest at
the current iteration. Since the objective decreases at every iter-
ation in the MM framework, at the current iteration , it is suffi-
cient to consider the set on which the objective is smaller than
the current objective evaluated at . Hence we can choose

here. Then the majorized problem
of (72) is given by (ignoring the constant terms and the scaling
factor )

(78)

Let us first take a look at the first term of the objective. It can
be rewritten as follows:

(79)

where is the matrix defined in (56) and
. From Lemma 6 and Lemma 4, we can

see that the matrix is Hermitian Toeplitz and its
maximum eigenvalue is bounded above as follows:

(80)

Let us define

(81)

then by choosing in Lemma 1, the function in (79) is
majorized by

(82)

Note that , so the first term of (82) is just a
constant.
For the second term of the objective in (78), we have

(83)
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Algorithm 3: The MM Algorithm for problem (7).

Require: number of sequences , sequence length
1: Set , initialize of size .
2: repeat
3:
4:
5:

6:

7:
8:
9:
10: until convergence

where

(84)

and the inequality follows from the Cauchy-Schwarz inequality
and the fact

(85)

Since the inequality in (83) holds with equality when
majorizes the second term of the objective in

(78) at .
By adding the two majorization functions, i.e., (82) and (83),

we get the majorized problem of (78) (ignoring the constant
terms):

(86)

where

(87)

It is easy to see that problem (86) can be rewritten as

(88)

which is separable in the elements of and the solution of the
problem is given by

(89)

Then at every iteration of the algorithm, we just compute the
matrix given in (87) and update according to (89). It is
worth noting that the matrix in (87) can be computed effi-
ciently via FFT (IFFT), since it can be rewritten as

(90)

where

(91)

and denotes the element-wise absolute-squared value. The
overall algorithm is then summarized in Algorithm 3 and we can
see that 2N-point FFT (IFFT) operations are needed at each
iteration, whose computational complexity is of order

.

VI. CONVERGENCE ANALYSIS AND ACCELERATION SCHEME

A. Convergence Analysis
The algorithms developed in the previous sections are all

based on the general majorization-minimization method and ac-
cording to Subsection II.C we know that the sequences of ob-
jective values generated by the algorithms at every iteration are
nonincreasing. Since it is easy to see that the objective functions
of problems (4), (7) and (8) are all bounded below by 0, the se-
quences of objective values are guaranteed to converge to finite
values.
In the following, we establish the convergence of the solu-

tion sequences generated by the algorithms to stationary points.
Let be a differentiable function and be an arbitrary con-
straint set, then a point is said to be a stationary point
of the problem

(92)

if it satisfies the following first-order optimality condition [20]:

where denotes the tangent cone of at . The con-
vergence property of the CSS design algorithm in Algorithm 1
can be stated as follows.
Theorem 8: Let be the sequence of

iterates generated by Algorithm 1. Then the sequence has at
least one limit point and every limit point of the sequence is
a stationary point of problem (4).

Proof: The proof is similar to that given in [5] and we omit
it here.
Note that the convergence results of Algorithms 2 and 3 can

be stated similarly and the sequences generated by the two al-
gorithms converge to stationary points of problems (8) and (7),
respectively.

B. Acceleration Scheme
The popularity of the MMmethod is due to its simplicity and

numerical stability (monotonicity), but it is usually attained at
the expense of slow convergence. Due to the successive ma-
jorization steps that we have carried out in the derivation of
the majorization functions, the convergence of the proposed
algorithms seems to be slow. To fix this issue, we can apply
some acceleration schemes and in this subsection we briefly in-
troduce such a scheme that can be easily applied to speed up
the proposed MM algorithms. It is the squared iterative method
(SQUAREM) [21], which was originally proposed to accelerate
any Expectation-Maximization (EM) algorithms. It seeks to ap-
proximate Newton's method for finding a fixed point of the EM
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algorithm map and generally achieves superlinear convergence.
Since SQUAREM only requires the EM updating map, it can
be readily applied to any EM-type algorithms. In [5], it was ap-
plied to accelerate some MM algorithms and some modifica-
tions were made to maintain the monotonicity of the original
MM algorithm and to ensure the feasibility of the solution after
every iteration. The modified scheme is summarized in Algo-
rithm 3 in [5] and we will apply it to accelerate the proposed
MM algorithms in this paper.

VII. NUMERICAL EXPERIMENTS

To show the performance of the proposed algorithms in
designing set of sequences for various scenarios, we present
some experimental results in this section. For clarity, the MM
algorithms proposed for problems (4), (7) and (8), i.e., Algo-
rithms 1, 3 and 2, will be referred to as MM-CSS, MM-Corr
and MM-WeCorr, respectively. And the acceleration scheme
described in Section VI.B was applied in our implementation
of the algorithms. All experiments were performed in Matlab
on a PC with a 3.20 GHz i5-3470 CPU and 8 GB RAM.

A. CSS Design
In this subsection, we give an example of applying the pro-

posed MM-CSS algorithm to design (almost) complementary
sets of sequences. We consider the design of unimodular CSS
of length and with . For all cases, the ini-
tial sequence set was generated randomly with each
sequence being , where are independent
random variables uniformly distributed in [0, 1]. The stopping
criterion was set to be

to allow enough iterations. The complementary autocor-
relation levels of the output sequence sets with
sequences are shown in Fig. 1, where the complementary au-
tocorrelation level is the normalized autocorrelation sum in dB
defined as

(93)

From the figure, we can see that as increases, the complemen-
tary autocorrelation level decreases, which can be easily under-
stood as larger provides more degrees of freedom for the CSS
design. In particular, when the autocorrelation sums of
the sequences are very close to zero and the sequences can be
viewed as complementary in practice.

B. Approaching the Lower Bound of
As have been mentioned earlier, the criterion defined in

(5) is lower bounded by . Then a natural question
is whether we can achieve that bound. In this subsection, we
apply the proposed MM-Corr and MM-WeCorr algorithms to
minimize the criterion , i.e., solving problem (7), and compare
the performance with the CAN algorithm [14].
In the experiment, we consider sequences sets with

sequences and each sequence of length
. For all algorithms, the initial sequence set

Fig. 1. Autocorrelation levels of sequence sets with and
.

was generated randomly as in the previous subsection, and the
stopping criterion was set to be .
For each pair, the algorithms were repeated 10 times

and the minimum and average values of achieved by the three
algorithms, together with the corresponding lower bound, are
shown in Table I. The average running time of the three al-
gorithms was also recorded and is provided in Table II. From
Table I, we can see that all the three algorithms can get rea-
sonably close to the lower bound of , which means the se-
quence sets generated by the algorithms are almost optimal for
the pairs that have been considered. Another point we
notice is that, for all pairs and all algorithms, the av-
erage values over 10 random trials are quite close to the min-
imum values, which implies that the three algorithms are not
sensitive to the initial points. From Table II, we can see that
for each pair, the MM-Corr algorithm is the fastest and
the CAN algorithm is the slowest among the three algorithms.
Since the per iteration computational complexity of MM-Corr
and CAN is almost the same ( -point FFT (IFFT) op-
erations), it implies that MM-Corr takes far fewer iterations to
converge compared with CAN. Another observation is that for
the same sequence length , the cases with larger values
take less time compared with the cases with smaller values,
for example the running time of the algorithms for the pair

is less than that for . Since
a larger value means higher per iteration computational com-
plexity, the observation implies that when becomes larger,
the algorithms need much fewer iterations to converge. It prob-
ably further implies that it is easier for a larger set of sequences
to approach the lower bound than a smaller set of sequences.

C. Sequence Set Design With Zero Correlation Zone
As can be seen from the previous subsection, it is impossible

to design a set of sequences with all auto- and cross-correlation
sidelobes very small. Since in some applications, it is enough
to minimize the correlations only within a certain time lag in-
terval, in this subsection we present an example of applying the
proposed MM-WeCorr algorithm to design a set of sequences
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TABLE I
THE LOWER BOUND OF IN (5) AND THE VALUES ACHIEVED BY DIFFERENT ALGORITHMS

TABLE II
THE AVERAGE RUNNING TIME (IN SECONDS) OF DIFFERENT

ALGORITHMS OVER 10 RANDOM TRIALS

with low correlation sidelobes only at required lags and com-
pare the performance with the WeCAN algorithm in [14]. The
Matlab code of the WeCAN algorithm was downloaded from
the website1 of the book [1].
Suppose we want to design a sequence set with

sequences each of length and with low auto- and
cross-correlations only at lags . To tackle the
problem, we apply the MM-WeCorr and WeCAN algorithms
from random initial sequence sets generated as in the previous
subsections. For the MM-WeCorr algorithm, we choose the
weights as follows:

(94)

so that only the correlations at the required lags will be mini-
mized. For both algorithms, we do not stop until the objective
in (8) goes below or after 10000 seconds. The evolu-
tion curves of the objective with respect to the running time are
shown in Fig. 2. From the figure we can see that the proposed
MM-WeCorr algorithm drives the objective to within 1
second, while the objective is still above after 10000 sec-
onds for WeCAN. This is because the proposed MM-WeCorr
algorithm requires about -point FFT's per it-
eration, while each iteration of WeCAN requires com-
putations of -point FFT's and also computations of the
SVD of matrices. The slower convergence of WeCAN
may be another reason and it is probably due to the fact that
WeCAN tries to minimize an approximate criterion instead of
the original one. Fig. 3 shows the auto- and cross-correlations
(normalized by ) of the sequence sets generated by the two
algorithms. We can see in Fig. 3 that the correlation sidelobes
of the MM-WeCorr sequence set are suppressed to almost zero
(about dB) at the required lags, while that of the WeCAN
sequence set is much higher. Another observation is that the
cross-correlations at lag for the WeCAN sequence set are

1http://www.sal.ufl.edu/book/

Fig. 2. Evolution of the objective with respect to the running time (in seconds).

very low, although we did not try to suppress them. The reason
is that in WeCAN, the weight at lag 0 should be always posi-
tive and in fact large enough to ensure some weight matrix to be
positive semidefinite. Thus the “0-lag” correlations are in fact
emphasized the most in WeCAN. Note that in MM-WeCorr, the
weight at lag 0, i.e., , can take any nonnegative value, thus it
is more flexible to some extent.

VIII. CONCLUSION
In this paper, we have developed several efficient MM algo-

rithms which can be used to design unimodular sequence sets
with almost complementary autocorrelations or with both good
auto- and cross-correlations. The proposed algorithms can be
viewed as extensions of some single sequence design algorithms
in the literature and share the same convergence properties, i.e.,
the convergence to a stationary point. In addition, all the algo-
rithms can be implemented via FFT and thus are computation-
ally very efficient. Numerical experiments show that the pro-
posed CSS design algorithm can generate an almost comple-
mentary set of sequences as long as the cardinality of the set is
not too small. In the case of sequence set design for both good
auto- and cross-correlation properties, the proposed algorithms
can get as close to the lower bound of the correlation criterion as
the state-of-the-art method and are much faster. It has also been
observed that the proposed weighted correlation minimization
algorithm can produce sets of unimodular sequences with virtu-
ally zero auto- and cross-correlations at specified time lags.
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Fig. 3. Auto- and cross-correlations of the 256-by-3 sequence sets generated by MM-WeCorr and WeCAN.

APPENDIX A
PROOF OF LEMMA 5

Proof: First, with Lemma 2, we have

(95)

Then, according to Lemma 3, it is easy to see that

(96)

and noticing the fact that is symmetric Toeplitz, we know
from Lemma 4 that

(97)

Thus,

(98)

and we have

(99)

where can be any submultiplicative matrix norm of .

APPENDIX B
PROOF OF LEMMA 6

Proof: The Toeplitz matrix can be embedded in
a circulant matrix of dimension as follows:

(100)

where

. . .
...

...
. . . . . .

(101)
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The circulant matrix can be diagonalized by the FFT matrix
[22], i.e.,

(102)

where is the first column of , i.e.,
. Since the matrix is

just the upper left block of , we can easily obtain
.

APPENDIX C
PROOF OF LEMMA 7

Proof: For any given , let us consider the
quadratic function of the following form:

(103)

where . It is easy to check that . So
to make be a majorization function of at over
the interval , we need to further have for
all . Equivalently, we must have

(104)

for all . Let us define the function

(105)

then condition (104) is equivalent to

(106)

Since the derivative of , given by

(107)

is nonnegative for all , we know that is non-
decreasing on the interval and the maximum is achieved at

. Thus, condition (106) becomes

(108)

Finally, by appropriately rearranging the terms of in
(103), we can obtain the function in (73). The proof is complete.
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